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Abstract—Methods for value function approximation are
a critical component of reinforcement learning algorithms.
However, there are many theoretical challenges to standard
approaches to value function approximation, which would allow
an optimal policy to be computed. This work presents an
alternate approach utilizing separate function approximation
for both the policy and the value function. Here, the value
function is updated along the gradient of the expected long
term return for the current estimate of the policy. This is
made possible by estimating the gradient from the state-
action value function. The novel result here is that this policy
iteration scheme is convergent to a locally optimal policy,
given a specific class of differentiable function approximators.
This theoretical result increases the applicability of actor-critic
algorithms to high performance and safety critical domains,
where convergence guarantees are needed.

I. Introduction

Fig. 1: Reinforcement Learning Framework
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Reinforcement Learning is a process by which tasks
are learned based on environmental stimulus. The learner
chooses actions based on the perceived state of the envi-
ronment to maximize a reward metric. This reward metric
may be perceived or inferred directly from the environmental
state. The agent observes the consequences of its actions
on the reward metric through the environmental state, and
optimizes its actions to yield the greatest long-term expected
reward. Without knowing the underlying distribution of the
data, the agent must plan an optimal policy using only the
observations from interactions with the environment.

Past work on reinforcement learning has utilized a value-
function based approach, in which the function approxima-
tion is used to determine the state-action value function for
each state-action pair, and the policy is then selected greedily
with respect to this value function. The limitations of this
approach are that it selects a deterministic policy, which may
not account for the stochastic nature of the real environment,
and that small perturbations to the value function can have
large effects on the policy.

This work examines an alternative method which directly
approximates a stochastic policy via an independent function
approximation scheme. This approximation scheme is based
on policy parameters, θ, and on the average reward per step,
ρ, where α > 0 is a fixed step size.

θt+1 ← θt + α∇θ ρ (1)

The above scheme converges to a locally optimal policy
under the measure of ρ. Furthermore, for this approach, small
changes in θ will on cause small changes in the policy.
It is shown that the policy gradient may be computed

utilizing a separate estimate for the value function satisfying
certain key characteristics. Algorithms of this type are known
as actor-critic algorithms. Here, the "actor" is the policy
planned by the agent, which governs its actions, and the
"critic" is the state-action value function, which critiques the
policy. Other schemes for estimation of the policy gradient
without computing the value function exist, but they converge
much more slowly. The value function estimate expedites
computation by reducing the variance in the estimate for
the policy gradient. This work presents convergence results
which are valid for all function approximators within a
specific class, where previously, convergence results were not
available. This theoretical result increases the usefulness of
actor-critic algorithms in high performance and safety critical
domains, which require convergence guarantees.



II. Policy Gradient Theorem

Consider the following reinforcement learning problem,
which is presented as a tuple of state st , action at , and reward
rt , at each time t.

st ∈ S, at ∈ A, rt ∈ R

The state transition probability, which governs the evolution
of the system from one state to another given a proposed
action, is as follows.

Pa
ss′ = P

(
st+1 = s′��� st = s, at = a

)
The expected reward is given below. As stated previously,
this is the quantity the learner attempts to maximize over
time through its choice of action.

Ra
s = E

[
rt+1 | st = s, at = a

]
,∀s, s′ ∈ S, a ∈ A

At each step of the decision process, the agent plans a policy,
π (s, a, θ), which maps the current state s, to an action a,
based on a set of parameters given by θ, where π (s, a, θ),
θ ∈ Rl for l � |S |. This policy is chosen to ensure that
the agents action at any state will maximize the long-term
expected return.

π (s, a, θ) = πθ (s, a) = P
(

at = a | st = s, θ
)
,∀s ∈ S, a ∈ A

We assume the policy is differentiable.

π (s, a, θ) ∈ C1 : ∇θπ (s, a, θ) exists

We assume that for any starting state, s0, there exists a unique
stationary distribution, dπθ (s), independent of s0. In other
words, eventually the probability of visiting any state under
a given policy is constant in time.

dπθ (s) = lim
t→∞

P
(

st = s | s0, πθ
)

We define the long-term expected reward per step as ρ (πθ ).
Maximizing this quantity is equivalent to solving the rein-
forcement learning problem.

ρ (πθ ) = lim
n→∞

1
n

n∑
t=1

E
[
rt | πθ

]
=

∑
s

dπθ (s)
∑
a

πθ
(
a |s

)
Ra
s

We define the state-action value function, Qπθ (s, a), which
assigns a valuation to any state-action pair, allowing us to
evaluate any candidate policy. Conceptually, we want to
change the policy in a manner which increases Qπθ (s, a).

Qπθ (s, a) =
∞∑
t=1

E
[
rt − ρ (πθ )�� s0 = s, a0 = a, πθ

]
Our goal is use our state-action value function, Qπθ (s, a),
to update the parameters, θ, which uniquely determine the
policy, π (s, a, θ), in a manner which increases the long-term
expected reward, ρ (πθ ). Thus, we want to show mathemat-
ically that the rate of change of ρ (πθ ) with respect to θ
is positively correlated with the rate of change of π (s, a, θ)
with respect to θ, and with Qπθ (s, a). The Policy Gradient
Theorem, stated next, does exactly that.

Theorem II.1. For any MDP,

∇θ ρ(πθ ) =
∑
s

dπθ (s)
∑
a

∇θπθ (s, a)Qπθ (s, a) (2)

Proof. In, [1], the proofs for both the above average reward
formulation, as well as an analogous start-state formulation,
are considered. For simplicity, we consider only the average
reward formulation here, as they are both equivalent. First,
define the state value function, Vπθ (s), as below.

Vπθ (s) =
∑
a

πθ (a |s)Qπθ (s, a)

Then, the following equations hold:

ρ(πθ ) =
∑
s

dπθ (s)
∑
a

πθ (a |s)Ra
s

Qπθ (s, a) + ρ(πθ ) = Ra
s +

∑
s′

Pa
ss′V

πθ (s′)

where dπ (s) = limt→+∞ P[st = s |so ; π] We first differentiate
the above expression for Vπθ (s).

∇θVπθ (s) = ∇θ
∑
a

πθ (a |s)Qπθ (s, a)

=
∑
a

[
∇θπθ

(
a |s

)
Qπθ (s, a) + πθ

(
a |s

)
∇θQπθ (s, a)

]

We then substitute the expression for Qπθ (s, a).

=
∑
a

∇θπθ
(
a |s

)
Qπθ (s, a)

+
∑
a

πθ
(
a |s

) 

∑
s′

Pa
ss′∇θVπθ

(
s′
)
− ∇θ

(
ρ (πθ )

)
Since ∇θ

(
ρ(πθ )

)
is independent of a, we can take it outside

the sum, which becomes one, as πθ
(
a |s

)
is a probability

distribution.

=
∑
a

[
∇θπθ

(
a |s

)
Qπθ (s, a)

]

+
∑
a


πθ

(
a |s

) ∑
s′

Pa
ss′∇θVπθ

(
s′
)
− ∇θ ρθ (πθ )

We multiply both sides of the previous equation by stationary
distance dπθ (s), and sum it over all s.∑

s

dπθ (s)∇θVπθ (s)

=
∑
s

dπθ (s)
∑
a

[
∇θπθ

(
a |s

)
Qπθ (s, a)

]

+
∑
s

dπθ (s)
∑
a


πθ

(
a |s

) ∑
s′

Pa
ss′∇θVπθ

(
s′
)

−
∑
s

dπθ (s) ∇θ ρ (πθ )



We observe that dπθ (s) is independent of a and s′, so we
bring it inside.

=
∑
s

dπθ (s)
∑
a

[
∇θπθ

(
a |s

)
Qπθ (s, a)

]

+
∑
s

∑
a


πθ

(
a |s

) ∑
s′

dπθ (s) Pa
ss′∇θVπθ

(
s′
)

−
∑
s

dπθ (s) ∇θ ρ (πθ )

Since, dπθ (s) is a stationary distribution, dπθ (s) Pa
ss′ is

equal to dπθ
(
s′
)
.

=
∑
s

dπθ (s)
∑
a

[
∇θπθ

(
a |s

)
Qπθ (s, a)

]

+
∑
s

∑
a


πθ

(
a |s

) ∑
s′

dπθ
(
s′
)
∇θVπθ

(
s′
)

−
∑
s

dπθ (s) ∇θ ρ (πθ )

Now, since dπθ
(
s′
)
∇θVπθ (s′) is independent of a and s, we

interchange the order of the sums.

=
∑
s

dπθ (s)
∑
a

[
∇θπθ

(
a |s

)
Qπθ (s, a)

]

+
∑
s′

dπθ
(
s′
)
∇θVπθ

(
s′
) ∑

s

∑
a

πθ
(
a |s

)
−

∑
s

dπθ (s) ∇θ ρ (πθ )

Finally, since πθ
(
a |s

)
is a probability distribution, the two

sums go to one.

=
∑
s

dπθ (s)
∑
a

∇θπθ
(
a |s

)
Qπθ (s, a)

+
∑
s′

dπθ
(
s′
)
∇θVπθ

(
s′
)
− ∇θ ρ (πθ )

Therefore, after canceling
∑
s′

dπθ
(
s′
)
∇θVπθ

(
s′
)

on both
sides, we get the desired result.

∇θ ρ(πθ ) =
∑
s

dπθ (s)
∑
a

∇θπθ (a |s)Qπθ (s, a)

�

III. Policy Gradient with function Approximation

In the previous section, we assumed that we had knowl-
edge of the state-action value function, Qπθ (s, a), which
was utilized to update the parameters, θ. However, in reality,
this information may not actually be available to us. Thus,
we would like to estimate Qπθ (s, a), and show that our
previous update scheme for the parameters, θ, will still yield
an optimum long-term expected reward ρ (πθ ), even when
the estimate for Qπθ (s, a) is utilized in place of its actual
value. One may think that the performance of the algorithm
would be affected by the choice of function approximator.
Here, we show that the previous algorithm is still optimal
when the estimate of Qπθ (s, a) is used, under any function
approximation scheme within the class of interest.

Now, we will consider the case in which Qπθ (s, a) is
given by another differential function approximator, which
we denote fw : S × A → R, with w being another vector
of parameters with dimension m, estimated via the following
gradient update. Here, Q̂πθ

(
st, at

)
is an unbiased estimator

for Qπθ
(
st, at

)
.

∆wt ∼
∂

∂w

[
Qπθ

(
st, at

)
− fw

(
st, at

)]2

∼
[
Qπθ

(
st, at

)
− fw

(
st, at

)]
∇w fw

(
st, at

)
The convergence criteria for this process is as follows.∑
s,a

dπθ (s) πθ
(
a |s

) [
Qπθ (s, a) − fw (s, a)

]
∇w fw (s, a) = 0

Theorem III.1. If fw satisfies:∑
s,a

dπθ (s)πθ (a |s)[Qπθ (s, a)− fw (s, a)]∇w fw (s, a) = 0 (3)

and is compatible with the policy parametrization in the
sense that:

∇w fw (s, a) =
∇θπθ (a |s)
πθ (a |s)

(4)

Then,

∇θ ρ(πθ ) =
∑
s

dπθ (s)
∑
a

∇θπθ (a |s) fw (s, a) (5)

Proof. In, [1], (3) is subtracted from the Policy Gradient
Theorem to yield the result. In our proof, we instead utilize
the potential function, E, inspired by the potential functions
used in proofs of stochastic gradient descent.

E =
1
2

∑
s

dπθ (s)
∑
a

πθ
(
a |s

) [
fw (s, a) −Qπθ (s, a)

]2
We differentiate E with respect to w.

∇wE =
∑
s

dπθ (s)
∑
a

πθ
(
a |s

)
fw (s, a) ∇w fw (s, a)

−
∑
s

dπθ (s)
∑
a

πθ
(
a |s

)
Qπθ (s, a) ∇w fw (s, a) = 0

Using the above expression for ∇w fw (s, a), we have the
following.∑

s

dπθ (s)
∑
a

πθ
(
a |s

)
fw (s, a)

∇θπθ
(
a |s

)
πθ

(
a |s

)
−

∑
s

dπθ (s)
∑
a

πθ
(
a |s

)
Qπθ (s, a)

∇θπθ
(
a |s

)
πθ

(
a |s

) = 0

We rearrange terms.∑
s

dπθ (s)
∑
a

fw (s, a)∇θπθ (a |s)

=
∑
s

dπθ (s)
∑
a

Qπθ (s, a) ∇θπθ
(
a |s

)
From Theorem II.I, we have the following.∑

s

dπθ (s)
∑
a

Qπθ (s, a) ∇θπθ
(
a |s

) TheoremI I .I
= ∇θ ρ (πθ )

�



IV. Application to Deriving Algorithms and
Advantages

We will use the previous theorem to derive an appropriate
form of the parameterization for the value function. We con-
sider the following policy parameterization, composed of a
linear combination of features, called the Gibbs distribution.

πθ (s, a) =
eθ

Tφsa∑
b eθTφb

,∀s ∈ S, a ∈ A

Here, each φsa is a feature vector of dimension l for (s, a).
By condition (4), we have the following.

∇w fw (s, a) = ∇θπθ (s, a)
1

πθ (s, a)
= φsa −

∑
b

πθ
(
s, b

)
φsb

Therefore, a natural parametrization of fw is the following.

fw (s, a) = wT


φsa −

∑
b

π
(
s, b

)
φsb


This parameterization is a linear combination of the same
features as in the policy parameterization, but is normalized
to have mean zero at every state. These relations describe
the class of function approximators used in this work.∑

a

πθ (s, a) fw (s, a) = 0,∀s ∈ S

V. Convergence of Policy Iteration with Function
Approximation

Theorem V.1. Let π, and fw , be any differentiable function
approximators for the policy, and value function, respectively
that satisfy the compatibility condition:

∇w fw (s, a) =
∇θπθ (a |s)
πθ (a |s)

and for which maxθ,s,a, i, j





∂2πθ (s,a)
∂θi∂θ j





 < B < +∞. Let
{αk }

+∞
k=0 be any step-size sequence such that limk→∞ αk = 0

and
∑

k αk = ∞. Then, for any MDP with bounded rewards,
the sequence

{
ρ (πk )

}∞
k=0, defined by any θ0, πk = π (., ., θk ),

and wk = w such that∑
s,a

dπk (s) πk (s, a)
[
Qπk (s, a) − fw (s, a)

]
∇w fw (s, a) = 0

θk+1 = θk + αk

∑
s

dπk (s)
∑
a

∇θπk (s, a) fwk
(s, a)

converges such that limk→∞
∂ρ(πk )
∂θ = 0.

Proof. By Theorem III.1, θk updates in the direction of the
gradient. Furthermore, we know that both ∂2πθ (s,a)

∂θi∂θ j
, and the

reward for the MDP, are bounded. These facts, together with
the above restrictions on the step size, tell us that ∂ρ(πk )

∂θ
converges to a local optimum by Proposition 3.5 given on
Page 96 of [3]. �

VI. Actor-Critic Algorithms

Generally, the class of reinforcement learning algorithms
which use a separate estimate for the state-action value
function to update the estimate for the policy are called
actor-critic algorithms. Here, the actor is the policy estimate,
which affects the system, and the critic is the state-action
value function estimate, which evaluates the policy. In these
algorithms, the weight update rule for the parameterization
of the critic is updated via the gradient as follows.

wt+1 ← wt + ∆wt

The previous sections considers a gradient law for wt which
is written explicitly below. The temporal difference (TD), is(
Qπθ

t+1
(
st, at

)
− f πθwt

(
st, at

))
.

∆wt = α
(
Qπθ

t+1
(
st, at

)
− f πθwt

(
st, at

))
∇w f πθwt

(
st, at

)
An alternative version of this algorithm is called TD(λ),
in which a weighted combination of the gradients
∇w f

πθ

k

(
st, at

)
at different times k up to t is utilized.

∆wt = α
(
Q

πθ

t+1
(
st, at

)
− f

πθ

wt

(
st, at

)) t∑
k=1

λ t−k∇w f
πθ

wk

(
st, at

)
Corollary VI.1. For every ε > 0, there exists λ sufficiently
close to 0, such that in the TD(λ) algorithm,

lim inf
k→∞

∇θ ρ (πk )
a.s
≤ ε

Proof. If λ is close to zero, then the algorithm reduces to
that considered previously. Then, by Theorem V.1, ∂ρ(πk )

∂θ
goes to zero in the limit as k goes to ∞. This is a stronger
result than that which is claimed, so the corollary is proved.

lim
k→∞
∇θ ρ (πk ) = 0⇒ lim inf

k→∞
∇θ ρ (πk ) ≤ ε ∀ε > 0

�

VII. Conclusions

This work presents novel convergence results for an
actor-critic method for reinforcement learning employing a
TD(λ) gradient update scheme, where λ is close to zero.
The results here hold any function approximator within a
specific class, whereas previously, convergence results were
not available. The faster convergence rate of actor-critic
methods over previous methods for function approximation
in reinforcement learning make them useful in a variety of
domains. The novel convergence results presented here are of
great benefit to the community, as they will allow these more
efficient algorithms to be used in high-performance or safety-
critical domains, which require convergence guarantees.
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